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Introduction

Context
I Brain connectivity studies can provide key insight into

the brain’s organisation.

I Parcellation of the cortical surface is essential for the
construction of connectivity networks.

Highlights
I Whole cortex parcellation method.

I Captures multi-scale information through a spectral
clustering formulation.

I Extension to groupwise parcellation is straightforward.

I Application to tractography-driven parcellation.

Database

Data
I Human Connectome Project database [1].

I Cortical surface represented as a 32k vertices mesh.

Tractography matrix
I Obtained from FSL’s bedpostX and probtrackX [2].

I Matrix Row describes how a vertex is connected to the
rest of the cortical surface: Connectivity profile.

I Affinity between vertices: Pearsons’ correlation between
connectivity profiles.

Multi-scale Base Parcellation

Supervertex Parcellation
I Capture local connectivity boundaries at different resolutions.

I High resolution parcellations where the vertices in each parcel or supervertex are
very correlated.

I Similar to the SLIC superpixels approach [3].

Iterative approach

A nity Matrix

N uniformly 

sampled seeds
Correlation-weighted 

geodesic distance 

from each seed

Fast Marching

Algorithm
Distance 

Minimisation

Supervertex Assignment

Supervertices 

Centres update

Converged? 

Maximal correlation 

with the 

supervertex

YES

Supervertex 

Parcellation

NO

Figure 1: Convergence of a base parcellation scale. Evolution of the number of seeds reevaluated (left)
and the average correlation within a supervertex (right).

Figure 2: Example of a multi-scale base parcellation: from left to right 2000, 1000 and 500 supervertices.

Joint Spectral Decomposition

We seek to obtain a common parcellation across the different supervertex
parcellations.
Inter-scales Edges

I Connect two supervertices if they share vertices on the original mesh.

I Strength of connection: amount of overlap.

Spectral Decomposition [5]
I Inter-scales edges are embedded in a constraint matrix.

I Global affinity matrix: block matrix of all scales’ merged affinity matrices.

I Spectral Decomposition of the global matrix subject to the inter-scales constraints.

Results

Figure 3: Parcellation results for two different subjects and the three different base parcellation scales.
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