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Abstract. The analysis of the connectome of the human brain provides
key insight into the brain’s organisation and function, and its evolution in
disease or ageing. Parcellation of the cortical surface into distinct regions
in terms of structural connectivity is an essential step that can enable
such analysis. The estimation of a stable connectome across a population
of healthy subjects requires the estimation of a groupwise parcellation
that can capture the variability of the connectome across the population.
This problem has solely been addressed in the literature via averaging
of connectivity profiles or finding correspondences between individual
parcellations a posteriori. In this paper, we propose a groupwise parcel-
lation method of the cortex based on diffusion MR images (dMRI). We
borrow ideas from the area of cosegmentation in computer vision and
directly estimate a consistent parcellation across different subjects and
scales through a spectral clustering approach. The parcellation is driven
by the tractography connectivity profiles, and information between sub-
jects and across scales. Promising qualitative and quantitative results on
a sizeable data-set demonstrate the strong potential of the method.

1 Introduction

Understanding the brain’s organisation and function remains an elusive goal
and a very active research subject. There seems to be an agreement amongst
scientists that the brain’s cortical surface can be separated or parcellated into
functionally and structurally distinct regions. Many approaches have sought to
identify those regions over the years, principally relying on anatomical properties.
Nonetheless, while some anatomical parcellations are widely known and relied
upon [?,?], they do not properly reflect the brain’s structural connectivity which
is key to understanding its function and the impact of neurological diseases.
Structural brain connectivity or connectome studies typically rely on anatomical
or random parcellations to build connectivity graphs from diffusion MRI (dMRI)
and tractography. However, such parcellations introduce a bias in the way the
network is constructed and can lead to erroneous connections and conclusions
[?]. This issue can be addressed via the construction of tractography driven
parcellations that will identify distinct regions in terms of connectivity, and
enable more meaningful connectome analysis.



A significant amount of effort has been focused on the complementary task of
resting state functional MRI (fMRI) driven parcellation [?,?]. Recently, dMRI-
driven parcellation has gained interest as well. Several methods have focused
on parcellation of brain substructures [?,?], modelling the task as a clustering
problem driven by the correlation between connectivity profiles. Aiming at whole
brain parcellation makes the task harder, since the high dimensionality of the
data prevents the direct use of common clustering techniques.

Clarkson et al. [?] proposed to refine an anatomical parcellation by introduc-
ing information from dMRI and iteratively updating labels. The method is also
extended to groupwise parcellation through averaging of the connectivity pro-
files. Its main drawback is the strong bias introduced by the initial anatomical
parcellation. Roca et al. [?] proposed an iterative approach that aims to reduce
the dimensionality of the data. In each iteration, the cortical surface is divided
into a set of Voronoi cells on which k-medoids clustering is performed. Parcels
that respect certain size and boundary constraints are excluded from the do-
main for the subsequent iterations. Only a subset of the cortical surface (regions
that are strongly connected) is parcellated. The method was later extended to a
group parcellation [?] through averaging of the different subjects’ connectivity
profiles. A hierarchical clustering based parcellation method was presented in
[?]. Despite the appeal of obtaining consistent parcellations across resolutions
(i.e. number of parcels), hierarchical clustering is at risk of propagating errors
from low resolution clusterings and does not circumvent the need of selecting a
number of parcels for further analysis.

While individual parcellations are the most faithful to a given subject’s con-
nectivity, they can be sensitive to noise and unreliable. Furthermore, they make
group studies difficult as there are no direct correspondences across subjects.
Such studies are however essential if one seeks to identify a common connectome
across healthy subjects (a connectome “backbone”), which could later enable to
evaluate the impact of a disease on the brain’s organisation. Both issues can be
overcome through a groupwise parcellation approach. Existing groupwise meth-
ods either seek a matching across subjects after independent parcellations [?]
relying on possible noisy results, or perform a groupwise parcellation after con-
structing an average connectivity profile [?,?] which prevents from obtaining
single subject parcellations. In this paper, we propose a whole brain groupwise
parcellation method that directly estimates matching parcels across subjects
without the need for averaging. We borrow ideas from the concept of coseg-
mentation [?] and design a multi-scale and multi-subjects spectral clustering
method driven by correlation between connectivity profiles. Here, consistency
across scales (so-called supervertex parcellations of the cortical surface) and sub-
jects is enforced via a set of links embedded in a constraint matrix. We tackle
the challenge of evaluating brain parcellations by computing group consistency
and information loss based measures, which provide sensible quantitative com-
parisons across methods and distinct groups. Qualitative evaluation shows how
correspondences between subject-dependent parcels are obtained within a group,
as well as achieving strong consistency across different groups.



Fig. 1: Illustration of the proposed method. Each subject Si is associated with a
connectivity matrix χSi

that drives the construction of a multi-scale base par-
cellation. Intra-subject edges (between base parcellation resolutions) and inter-
subject edges (between all pairs of subjects at the coarsest parcellation resolu-
tion) are built to allow a common spectral decomposition of the affinity matrix
(connectivity profiles correlation).

2 Groupwise Multi-Scale Parcellation

In this section, we describe the method for obtaining a group parcellation of the
cortical surface of a set of N different subjects into K parcels. We represent these
surfaces as a triangular mesh made of Nv vertices, and assume all surfaces to be
registered to the same reference [?]. As a result, all surface vertices have direct
correspondence across all subjects. Furthermore, we consider that a Nv × Nv

tractography matrix χSi
has been computed from diffusion data for each subject

Si. Each row of this matrix χSi(v) describes how a vertex v is connected to the
rest of the cortical surface.

The proposed method is illustrated in Fig.1. For each subject, a set of high
resolution parcellations is constructed for L different resolution layers (base par-
cellation). These parcellation layers then serve as the basis of a multi-scale group-
wise spectral clustering problem, where the affinity between vertices is described
by the tractography matrix, and edges across resolutions and subjects force the
parcellations to be consistent.

2.1 Base Parcellation

The first step towards building our groupwise parcellation is to capture struc-
tural connectivity information at multiple scales through the construction of
supervertices at different resolutions. Similarly to superpixels [?], supervertices
can be seen as an initial over-segmentation of the cortical surface based on con-
nectivity information such that vertices within a supervertex have very similar



connectivity profiles. We rely on the geodesic distance between vertices to obtain
spatially contiguous supervertices, while the correlation between their connec-
tivity profiles enforces homogeneous connectivity.

We are inspired by the method proposed in [?] that relies on Fast March-
ing to compute geodesic distances for surface segmentation. In this setting, the
computation of the geodesic distance d(v0,v) = U(v) from vertex v0 can be
reformulated as a front propagation problem, where U follows the Eikonal equa-
tion ‖∇U‖F = 1 which can be solved using the Fast Marching algorithm. F is
the speed function characterising the front propagation. We can compute a cor-
relation dependent geodesic distance by defining a correlation weighted speed
function: F (v) = exp (µρ(χSi

(v0), χSi
(v))). Here, ρ(., .) is the Pearson’s cor-

relation coefficient between the vertices’ connectivity profiles χSi
(v) and µ is

a weighting parameter. In this setting, the front will propagate faster towards
vertices that have a high correlation (i.e. similar connectivity profiles) with the
source vertex v0.

Each supervertex resolution is computed through an iterative approach. Given
a specified number of Nl supervertices, we initialise by uniformly sampling Nl

seeds across the brain’s cortical surface. At each iteration, we first compute the
correlation weighted geodesic distance from each seed to the rest of the surface,
and build supervertices by assigning a vertex to its closest seed. We then reeval-
uate the seeds by selecting, for each supervertex, the vertex that has the highest
correlation with the rest of the cluster. This process is iterated until convergence
for the L different levels.

Each base parcellation level is associated to a Nl × Nl merged connectivity
matrix, constructed by adding the fibre counts across vertices. The level’s affin-
ity matrix Wl is defined as the Pearson’s correlation coefficient between those
merged connectivity profiles. In order to obtain spatially contiguous parcels,
correlation weighted edges are only constructed between supervertices that are
adjacent.

Our next step is to build connections between the different base parcella-
tion levels, so as to recover a common partition of the cortical surface across
resolutions.

2.2 Intra-Subject Connections Between Resolutions

We seek coherence across resolutions by enforcing supervertices that are in sim-
ilar locations on the cortical surface to be assigned to the same parcels through
the construction of inter-resolutions edges.

For a given resolution level l, each supervertex is connected to a supervertex
at the finer level l− 1 if they share vertices on the original cortical surface. The
strength of the edge is defined by the amount of overlapping vertices, so that the
same parcellation result is imposed on supervertices that are the most similar.
The intra-subject, inter-resolutions links can be written as:

Cl−1,l(j, k) =
|sjl ∩ skl−1|
|sjl |

(1)



where sjl is the set of vertices at the original resolution that belong to the j-th

supervertex at resolution level l and |sjl | is the number of vertices in sjl .
In this setting, we can estimate a parcellation for a single subject Si that is

consistent across resolutions using the multi-scale normalised cut approach [?].
For each level l, we aim at finding a K-way parcellation matrix Xl ∈ {0, 1}Nv×K

defined as:

Xl(i, j) =

{
1 if sil ∈ parcel j

0 otherwise
(2)

The multi-scale parcellation and affinity matrices can then be constructed as
follows:

XSi =

X1

...
XL

 , WSi =

W1 0
. . .

0 WL

 (3)

Finally, we build a constraint matrix that encodes the inter-resolution links
and ensures consistency of the recovered parcellation across resolutions:

CSi =

C1,2 −IN2
0

. . .
. . .

0 CL−1,L −INL

 (4)

Here, INl
is the Nl ×Nl identity matrix and Nl is the number of supervertices

at scale l. This matrix forces the obtained parcellation to be consistent across
scales through the following constraint equation:

CX = 0 (5)

Optimisation of the multi-scale normalised cut criterion, subject to the inter-
resolution constraint [?], yields a single subject parcellation that captures local
connectivity information at different scales. Comparing the obtained parcella-
tions within a group is however a very challenging task as there are no direct
matches between parcels, and anatomical variability (as well as registration er-
rors) can cause different subjects to have very different parcel boundaries. This
issue can be addressed by performing a concurrent parcellation of all the subjects
within the group to directly obtain correspondences between parcels.

2.3 Inter-Subject Connections

Spectral clustering offers the possibility to integrate different subjects in the
same framework in a very natural manner. A group consistent parcellation can be
obtained through a joint estimation of the parcellation matrix X across subjects.
The groupwise parcellation, affinity and constraint matrices are defined as:

X =

 XS1

...
XSN

 , W =

WS1 R
. . .

RT WSN

 , C =

CS1 0
. . .

0 CSN

 (6)



Matching parcellations are enforced by adding inter-subject connections en-
coded in the matrix R. Following [?], we only connect the coarsest resolution
layers. This step is essential in our case as it relaxes the need for a precise reg-
istration in addition to allowing individual differences at the highest resolution.

Let us consider that all subjects have been registered to a common surface
mesh. Similarly to the multi-scale parcellation approach, we seek a common
parcellation across subjects by forcing supervertices in similar locations to belong
to the same parcel. To this end, a supervertex from subject i is connected to
a supervertex from subject j if they share the highest amount of overlapping
surface vertices and have the strongest correlated connectivity profiles. We define
the inter-subject edges between matching supervertices as follows:

R(si(S1), sj(S2)) = αρ(si(S1), sj(S2)) (7)

where ρ(si(S1), sj(S2)) is the correlation between the connectivity profiles of the
two different subjects’ supervertices and α is a weighting parameter. Correlation
weighted edges enable accounting for differences in anatomy and possible errors
in registration by decreasing the strength of the edges in non matching regions.

2.4 Optimisation

The joint parcellation is eventually recovered by optimising the multi-scale nor-
malised cut objective criterion [?] :

maximise E(X) =
1

K

K∑
l=1

XT
l WXl

XT
l DXl

subject to X ∈ {0, 1}N×K ,

X1k = 1N ,

CX = 0

(8)

A near global-optimal solution to this NP-complete problem can be estimated
in a two-step approach. First by finding the global optimum of the relaxed con-
tinuous problem Z∗, and second by solving a discretisation problem to project
this continuous optimum to the discrete space.

We define the normalised affinity matrix P = D− 1
2WD− 1

2 , and the projector
matrix Q that integrates the constraint matrix:

Q = I −D− 1
2CT (CD−1CT )−1CD− 1

2 (9)

We solve the continuous problem following the Rayleigh Ritz theorem [?],
through computation and normalisation of the K largest eigenvectors of the
matrix QPQ. This solution is then discretised through an iterative process [?]
by seeking the closest solution to Z∗ that satisfies the constraints of the discrete
problem.



3 Experimental Evaluation

Evaluation of cortical parcellations remains a very challenging task due to the
lack of a ground truth parcellation. In this section, we evaluate the quality of
our parcellations based on two main ideas: group consistency and fidelity to
each individual’s connectivity matrix. We are seeking to observe similarities in
connectivity within and across groups, while preserving individual variability.

3.1 Data Acquisition and Preprocessing

We evaluated our method on 100 different subjects (age range 22-35 years old)
from the latest release of the Human Connectome Project (HCP)3. The HCP
dMRI have been acquired using a multi-shell approach, with three shells at b-
values 1000, 2000, and 3000 s/mm2 and 90 gradient directions per shell. The
structural and diffusion data of all subjects have been preprocessed following the
HCP’s minimum processing pipeline [?]. The cortical surfaces of all subjects are
registered and represented as a triangular mesh of 32k vertices per hemisphere.
Vertices corresponding to the medial wall are excluded from parcellations. The
tractography matrix is obtained on the native mesh representing the gray-white
matter interface using FSL’s bedpostX and probtrackX methods [?,?] which
estimate the fibres orientation at each voxel with a ball and stick model, and
perform probabilistic tractography respectively. Following [?], we fitted three
fibre compartments per voxel. 5000 streamlines were sampled from each of the
mesh vertices. Each entry χ(v,q) counts the number of streamlines sampled
from the surface vertex v that reach vertex q. The groupwise parcellation was
performed on the left hemisphere of two disjoint groups of 50 randomly selected
subjects with a base parcellation of 3 levels of 2000, 1000 and 500 supervertices
and parameter µ heuristically set to 3.

3.2 Parameter Selection

The weighting parameter α has a large influence on the obtained parcellation and
its consistency across subjects. We evaluate the quality of our parcellations and
the impact of this parameter via an intra-subject information loss measure and
a group consistency measure. Both measures are estimated on the connectivity
graph rather than the parcellation itself. This is particularly relevant for group
consistency, where the parcellations are expected to have different boundaries,
but the merged connectivity graphs should be similar.

Our main objective is to obtain parcellations that summarise the structural
connectivity maps faithfully. In other words, we seek to lose as little information
as possible when merging the connectivity profiles of several vertices into one
entity. The first measure we are computing aims to evaluate this information loss
through the Kullback Leibler (KL) divergence. Each subject’s K × K merged
connectivity matrix is converted into a Nv ×Nv matrix χclus

Si
that should be as

3 Human Connectome Project Database, https://db.humanconnectome.org/
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Fig. 2: Evolution of the average KL divergence (a) and the SAD (b) across sub-
jects depending on the value of the parameter α and the number of parcels.

similar as possible to the Nv × Nv matrix χSi prior to clustering. The matrix
χclus
Si

is constructed by assigning the same connectivity profile to all the vertices
that belong to the same cluster. The KL divergence is then computed between
the matrices χSi and χclus

Si
, that are normalised to be probability mass functions.

The idea is to evaluate how much information is lost when χclus
Si

is used to ap-
proximate χSi. Second, we evaluate group consistency using the sum of absolute
differences (SAD). After parcellation, an average K ×K connectivity matrix is
constructed from all the subjects’ merged connectivity matrices. The deviation of
each subject from the average is then evaluated by computing the SAD between
the average matrix and the subject’s matrix. We compute those measures for a
range of 50 to 250 parcels and the weighting parameter α ranging from 0.1 to 3.
The obtained results are shown in Fig.2. Intuitively, the KL divergence should
decrease when the number of parcels increases, as the averaging of connectivity
profiles is reduced. Conversely, the SAD is expected to increase with the number
of parcels, as more individual information is maintained. Both measures show
a rapid decrease, then stabilise when α is increased. This can be explained by
the fact that when α is low enough, the parcellations are not constrained to be
in accordance. Hence, the K clusters will be spread across subjects, leading to
different parcellations and different numbers of parcels. However, both SAD and
KL tend to increase slowly after reaching a minimum as constraints that are
too strong can force identical parcellations, while isolated supervertices start to
appear. Our main goal is to obtain parcellations that are as faithful as possible
to the subjects connectivity profiles, we therefore select the value of α that min-
imises the KL divergence. The two groups we tested our method on show the
same behaviour, and require α to be increased with the number of parcels (from
0.1 to 0.5 in our setting). Fig.4 shows examples of parcellations obtained with
the optimal value of α for 160 parcels. We can observe a strong consistency, but
also the different shapes and boundaries of the parcels across subjects.
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Fig. 3: Boxplot comparison of the proposed method to anatomical, random, hi-
erarchical and spectral parcellations for the KL divergence (a) and SAD (b).

3.3 Method Evaluation

We have compared the proposed groupwise parcellation method to (a) multi-
scale individual spectral clustering (described in sec.2.2), (b) hierarchical clus-
tering of the finest supervertex resolution level, (c) anatomical parcellations from
the Destrieux atlas [?], and (d) Poisson disk sampling random parcellations. We
computed the KL divergence and SAD for the five different methods for 75
parcels (anatomical parcellation granularity). In the absence of existing match-
ing across the subject’s clusterings, the clusters that had the highest overlap were
matched. This matching is not optimal, but highlights one of the main drawbacks
of individual parcellations. Results are shown in Fig.3. While it is expected that
a groupwise parcellation would not perform as well as individual parcellations in
terms of information loss, the increase in KL remains very limited and faithful
to the data in comparison with random or anatomical parcellation. The SAD
score is significantly ouperforming all methods.

3.4 Group Comparisons

Finally, we compared the consistency across our two groups’ parcellations. Given
the sizeable data-set, both groups should reflect common connectivity proper-
ties and be essentially free of inter-subject variability. The average parcellations
obtained through majority voting are compared by computing the Dice score
between all highest matching parcels. We obtain a mean Dice score of 72± 5 %
across all numbers of parcels. It is as expected lower than the average intra group
pairwise dice score of 79±7% but significantly outperforms the average pairwise
dice scores between independent parcellations (57 ± 3%). The strong similar-
ity between the two groups’ parcellations is shown in Fig.5. We also computed
the SAD score between average connectivity profiles after matching the parcels.
Its mean value of 0.20 ± 0.05 is on par with intra group SAD scores (individ-
ual vs. average connectivity matrices, mean value 0.16± 0.07) and outperforms



the SAD scores between individual parcellations (mean 0.48± 0.1). Inter-group
comparisons for other methods are not performed here as the high within group
variability does not allow the construction of a meaningful average parcellation.

4 Discussion

We presented a groupwise multi-scale parcellation method of the brain’s cortical
surface that is driven by structural connectivity. Our proposed spectral clus-
tering approach allows the recovery of consistent parcellations across subjects
and scales without averaging raw connectivity profiles. It shows great consis-
tency across and within groups as well as limited information loss with respect
to the raw connectivity matrix. The proposed method paves the way for group-
wise connectome analysis. First and foremost, this could enable idenfication of
a connectome backbone, i.e. connections that are present across populations.
Specific groups studies could consequently be considered (healthy vs. disease,
young vs. ageing for instance) in order to identify possible connectivity disrup-
tions or global differences. The obtained parcellations and networks could also
be compared to fMRI based parcellations, or correlated with activation regions
from fMRI to study the relationship between structure and function. Several ex-
tensions and improvements of the method could be considered. Incorporating a
different base parcellation in our framework is easy, since no assumption is made
on the method adopted. The consistency across scales would be more natural
through a hierarchical approach where the different scales have matching bound-
aries. Despite correlation weighted inter-subject links, the method relies strongly
on the registration across subjects that can be imperfect. Another interesting
extension of the method would be to incorporate a diffusion driven registration
task in an iterative fashion, where registration and parcellation alternate.
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Fig. 4: Example parcellations (160 parcels) of subjects within the same group.

(a) (b) (c) (d)

(d) (e) (f)

Fig. 5: Average parcellations for 70 (a,b,c) and 130 parcels (e,f,g). (a,e) and (b,f)
show parcellations from two different groups of normal subjects, while (c,g) shows
the disagreement between both groups. Each group contains 50 subjects. The
average 75 clusters anatomical parcellation (d) is shown as comparison to our
proposed 70 clusters parcellation.


