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Abstract. Parcellating the brain into a set of distinct subregions is
an essential step for building and studying brain connectivity networks.
Connectivity driven parcellation is a natural approach, but suffers from
the lack of reliability of connectivity data. Combining modalities in the
parcellation task has the potential to yield more robust parcellations,
yet hasn’t been explored much. In this paper, we propose a graph-
based multi-modal parcellation method that iteratively computes a set of
modality specific parcellations and merges them using the concept of fu-
sion moves. The merged parcellation initialises the next iteration, forcing
all modalities to converge towards a set of mutually informed parcella-
tions. Experiments on 50 subjects of the Human Connectome Project
database show that the multi-modal setting yields parcels that are more
reproducible and more representative of the underlying connectivity.

1 Introduction

Advances in neuroimaging have provided a tremendous amount of in-vivo in-
formation about the brain’s organisation. In particular, studying connectivity
networks from a network theoretic perspective has shown great potential and
receives growing interest [15]. An essential step for carrying out network analy-
sis is the definition of the nodes of the networks, as the high dimensionality of
the data acquired at the voxel or vertex level hinders tractable and meaning-
ful analysis. Nodes are typically obtained by parcellating the brain into a set
of subregions. Connectivity driven parcellation is a natural approach, as each
network node will comprise regions with similar connectivity profiles. Cortical
parcellation can also be approached from the perspective of identifying function-
ally specified cortical areas, an elusive objective that has been ongoing for over
a century [4]. Cortical areas can be defined based on their local microstructure,
connectivity and function. This suggests that a single modality is not sufficient
for identifying these areas [4]. Brain parcellation has notably been carried out
using myelin [5], diffusion MRI (dMRI) and tractography [10, 12] and functional
MRI (fMRI) data [2, 3]. Yet, these modalities suffer from important drawbacks
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that cannot be addressed in a mono-modal setting. dMRI is prone to false neg-
atives and biased with respect to the location of fibre terminations, fMRI can
be noisy and prone to false positives, while myelin lacks information outside the
motor area and visual cortex.

Exploring parcellations driven by several modalities could provide more ro-
bust and accurate cortical delineations. For instance, strong similarities have
been observed between myelin maps and resting-state fMRI gradients [5], while
functional and structural connectivity are intrinsically linked. Few methods have
attempted to combine different modalities. The majority of efforts have aimed to
construct a more robust fMRI connectivity matrix informed from tractography,
for instance by eliminating functional connections that do not have a struc-
tural support [11]. This kind of approach however assumes a strong reliability of
dMRI data and a global agreement between structural and functional connec-
tivity. Markov Random Field (MRF) models have been applied successfully to
dMRI and fMRI driven cortical parcellation tasks [6, 13]. Their main advantage
is their versatility, in the sense that no restriction is made on the data term
driving the parcellation scheme. As a result, the same framework can be used
for parcellation tasks using different kinds of input data.

In this paper, we exploit this idea and extend the mono-modal MRF mod-
els to the multi-modal setting. We propose an iterative approach where each
iteration computes a set of parcellations driven by a single modality. These par-
cellations are subsequently merged based on each modality’s local reliability
using fusion moves [9]. The merged parcellation initialises the next iteration,
forcing the different modalities to converge towards a set of mutually informed
parcellations. The method was tested on the Human Connectome Project (HCP)
database using myelin maps, and fMRI and dMRI data. Focusing on fMRI par-
cellation, our experiments show that the multi-modal setting yields parcels that
are more reproducible and more representative of the underlying connectivity.

2 Methods

As illustrated in Fig. 1, our method alternates between generating a set of N
modality specific parcellations (Sec. 2.1), and the construction of a joint parcel-
lation that initialises the next iteration (Sec. 2.2 and 2.3).

2.1 Modality Specific Markov Random Field Formulation

Considering a set of N aligned modalities, we represent the brain’s cortical sur-
face as a triangular mesh M = {V, E}, where each vertex is associated with
modality specific data (e.g. fMRI timeseries). We cast the parcellation task as a
labelling problem where, for each modality, we aim to assign a label lmod

v to each
vertex v, lmod

v ∈ L = J1,KK, where K is the number of sought parcels, and each
label corresponds to a parcel assignment. This is can be done in the mono-modal
setting following the coarse to fine iterative approach proposed in [13]. Given an
initial parcellation, each update consists of: 1) defining a parcel specific property
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Fig. 1: Overview of the proposed iterative method. Each iteration updates an
initial parcellation into a set of modality specific parcellations using an MRF
model. The parcellations are then merged based on the modalities relative influ-
ences into a multi-modal parcellation, which initialises the next iteration.

based on the current parcellation and 2) updating the parcellation by optimising
an MRF model. This corresponds to minimising the following energy:

E(lmod) =
∑
v∈V

Dmod
v (lmod

v ) + β
∑
v∈V

∑
w∈N (v)

Uv,w(lmod
v , lmod

w ) (1)

The pairwise term Uv,w(lmod
v , lmod

w ) acts as a smoothing prior and is designed
for all modalities as a Potts model, that penalises assigning different labels to
neighbours with a constant cost. The unary cost Dmod

v (lmod
v ) defines the likeli-

hood of assigning vertex v to a specific parcel. We consider three different kinds
of modalities that can be used to drive the parcellation scheme and associate
each modality to a specific unary cost Dmod

v (lmod
v ) and parcel property.

Diffusion MRI. We adopt the unary cost used in [13] which showed good
performance for tractography data. The unary cost computes the Pearson’s cor-
relation coefficient between the vertices’ tractography connectivity profiles and
the parcel centres. Parcel centres are the vertices that have the highest correla-
tion to the rest of their currently assigned parcel.

Functional MRI. Each vertex is associated with fMRI timeseries. Similarly
to dMRI, we obtain a parcel centre by maximising the within parcel timeseries
correlation. Due to the low SNR of fMRI data, we follow the approach proposed
in [6] and compute a representative average timeseries for each label. We average
the timeseries of the N closest vertices (in terms of shortest path) to the parcel
centre that are in the same parcel. The unary cost for a given vertex is then the
correlation between the vertex’s timeseries and the parcel’s average timeseries.

Non connectivity data (e.g. myelin maps). Each vertex is associated
with a scalar value. We use unary costs and parcel properties inspired from MRF-
based image segmentation. The parcel centre is defined as the geometric centre
of the parcel (obtained by erosion of the parcel), and is assigned the average
vertex value within the parcel. The unary cost is the shortest path on the mesh
M between the centre and the vertex v, where the edges are weighted by the
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absolute difference between the values of the parcel centre and the vertex. The
use of the shortest path allows the parcels to be contiguous.

This set up yields independent mono-modal parcellations for a set of modal-
ities, where each modality is parcellated independently and subject to modality
specific noise. In particular, parcellations may not be coherent, making com-
parisons difficult. Forcing all parcellations to agree (e.g. by using inter-modality
pairwise costs) would not be adequate as the modalities are not expected to pro-
vide information that agrees across the whole cortex [4] and modalities should
not have the same local importance. We propose to force the parcellations to
converge towards a set of coherent parcellations by initialising each iteration with
a multi-modal parcellation computed by merging the individual parcellations.

2.2 Merging Modalities with Fusion Moves

Modelling the merging problem as an MRF of energy Em(l) =
∑

v∈V U
m
v (lv) +∑

v∈V
∑

w∈N (v) Uv,w(lv, lw) allows to tailor the model according to the modal-
ities considered, their interaction, and the quality of the data. We propose to
define the unary cost Um

v (lv) based on the mono-modal labellings and how im-
portant and reliable a modality is locally. For instance, Um

v (lv) can give lower
costs to labels selected by the most reliable modalities. Reliability could be de-
fined based on prior knowledge, or in a data-driven way using segmentation
uncertainties obtained from the mono-modal MRFs [7]. Um

v (lv) could also inte-
grate parcel boundaries obtained from a different source (e.g. registered atlases
or expert annotations). An example of unary costs is presented in section 2.3.

Each mono-modal solution can be seen as a suboptimal solution to the multi-
modal problem, where the modality is given more importance compared to the
others. This makes the concept of fusion moves particularly well suited to solv-
ing our problem. Fusion moves [9] cast the task of combining an ensemble of
suboptimal solutions as a set of simple binary MRF subproblems. In each bi-
nary optimisation (a fusion move), we consider two suboptimal labellings l1 and
l2 ∈ LV . We seek to label the cortical mesh M with a binary label b ∈ {0, 1}V
so as to obtain a combination lc defined as lc(b) = l1 ◦ (1 − b) + l2 ◦ b, where
◦ is the Hadamard product. The fusion move is carried out by minimising the
binary MRF energy Eb(b) = Em(lc(b)). The next fusion move considers a new
modality and the current combined parcellation lc as the suboptimal labellings to
merge. Fusion moves are repeated for all modalities until the combined labelling
is no longer updated. The joint parcellation then initialises the next resolution.

2.3 Application to Multi-modality Informed rs-fMRI Parcellation

We propose to apply the multi-modal framework to increase the robustness of
resting-state fMRI (rs-fMRI) driven parcellations. rs-fMRI provides useful in-
formation all around the cortex. However, it suffers from a low SNR which can
significantly impact the obtained parcels and their reproducibility. Introducing
multi-modal information in the parcellation scheme could be a way of address-
ing this issue. We consider combining rs-fMRI, dMRI and myelin maps due to
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their expected similarities. We define the merging unary costs based on how
informative the modalities are, and from prior knowledge of their weaknesses:
Um
v (lv) = minmod∈J1,NK

(
1− αmodδ(lv, l

mod
v )

)
, where αmod ∈ [0, 1]V are costs

that describe the local reliability of all modalities, δ(., .) is the Kronecker delta
function and lmod are the labellings obtained from mono-modal parcellations.
All αmod costs are rescaled between 0 and 1.

Because of rs-fMRI’s low SNR, the joint parcellation should be influenced
by the other modalities when they are reliable. We therefore assign a uniform
reliability αfMRI = 0.5 to rs-fMRI of across the whole cortex. Myelin maps
should influence the merged parcellation in regions where strong variations of
myelination are observed. We therefore define the myelin cost as the gradient of
the pre-smoothed myelin maps (see Fig. 3b). Finally, dMRI tractography suffers
from a gyral bias: tractography streamlines tend to terminate preferentially in
gyri [17]. This bias influences the boundaries of dMRI driven parcellations that
tend to align with cortical folding. To evaluate which vertices are impacted by
this bias, we compute for each vertex v the ratio of the number of fibres that
terminate at v over the number of connections obtained by sending streamlines
from v. As shown in Fig. 3a, this measurement supports the gyral bias theory
as the resulting map agrees with cortical folding patterns. Using this measure
as a unary cost prevents the vertices affected by the bias to influence the joint
parcellation. In this setting, dMRI will have little influence on parcel boundaries
and essentially act as a smoothing prior, indicating which vertices should be in
the same parcel. As a result, we expect the converged joint parcellation to be
similar to the rs-fMRI parcellation.

3 Results

Evaluation of cortical parcellations is challenging due to the absence of ground
truth. Our proposed evaluation has two main objectives: evaluate i) whether
multi-modality increases the robustness of the parcellation method, ii) how well
the parcellations reflect the underlying connectivity. Since our application is tai-
lored to construct more reliable rs-fMRI parcellations, we focus our evaluation
on this modality. we evaluate the impact of multi-modal information by com-
paring the mono-modal rs-fMRI driven parcellation to the joint and individual
rs-fMRI parcellations obtained using our Graph-based Multi-modal Parcellation
(GraMPa) method. We tested GraMPa on 50 randomly selected subjects (left
hemisphere) of the HCP database (S500 release) and used the HCP’s prepro-
cessed fMRI and dMRI data, and myelin maps. dMRI tractography connectivity
profiles are obtained using FSL’s bedpostX and probtrackX [1]. 5000 streamlines
are sampled from each mesh vertex. We perform rs-fMRI driven parcellation us-
ing timeseries from a 30 minutes acquisition. Evaluation is performed on a second
independent 30 minutes acquisition to test the method’s robustness. The MRF’s
smoothness parameter β is set heuristically to 0.3. Modality specific MRFs were
optimised using fastPD [8] due to its speed, while fusion moves were optimised us-
ing QPBO [14] because of asymmetric pairwise costs. Several MRF optimisation
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Fig. 2: Quantitative evaluation measures. From left to right in each figure, we
compare the mono-modal parcellations to the merged and the multi-modality
guided rs-fMRI parcellations. Lower BIC values (d) are better. Paired t-test
results are shown as non-significant (n.s), p < 0.05 (*) and p < 0.001 (**).

algorithms were tested with very little impact on the obtained parcellations. We
tested the reproducibility with respect to initialisation using 10 random initial-
isations constructed using Poisson Disc Sampling. Parcellations were computed
for four different resolutions (50, 100, 150 and 200 labels). All measures are com-
puted for all initialisations and subjects. Reproducibility is evaluated using the
Adjusted Rand Index (ARI) [4] and the modified Dice Score Coefficient (DSC)
[13] that allows merging very similar parcels. ARI is a measure from probability
theory that assesses the statistical dependence between two clustering solutions.
It takes values between -1 and 1, where 1 means the clusterings are identical. Fig-
ures 2a and 2b show comparative boxplots of the two measures between GraMPa
and the mono-modal approach. We can see that most configurations are more
reproducible. Results are significant (p < 0.001) for the two largest resolutions.
The lower performance for 50 parcels could indicate that it is difficult to obtain
large smooth parcels while agreeing with all reliability maps. Our parcellations’
agreement with the underlying structure is evaluated by i) computing the av-
erage functional coherence (FC) [6] and ii) evaluating the agreement with task
fMRI activation maps (obtained using FSL’s standard tools) using the Bayesian
Information Criterion (BIC) [16]. FC evaluates the average correlation between
a parcel’s average timeseries and the timeseries of all vertices in the same parcel.
In order to avoid introducing a size bias, very small parcels are ignored from
the computation. For each parcel, BIC evaluates how well it is possible to fit a
probabilistic model of the concatenated task activation maps of all 50 subjects.
As shown in Fig. 2c and 2d, GraMPa yields better results for both measures.
Results are significant (p < 0.001) for most configurations. Finally, Fig. 3c-g
visually compares parcels boundaries with Brodmann and myelin maps and the
average task activation maps over all 50 subjects. We can see that GraMPa
parcellations have a stronger agreement with task activations boundaries.
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Fig. 3: Visual results for randomly selected subjects. (a) dMRI and (b) Myelin
reliability maps. (c,d) Overlap between the boundaries of the multi-modal par-
cellation and (c) myelin maps and (d) Brodmann areas. (e,f,g) Comparative
overlap between rs-fMRI parcellations boundaries and t-fMRI activation maps.
Top row: mono-modal parcellations, bottom row: GraMPa rs-fMRI parcellations.
(e,f) Motor task, (g) Language task. Coloured arrow indicate striking examples.

4 Discussion

In this paper, we proposed a general graph-based framework which provides
modality specific coherent parcellations, as well as a multi-modal parcellation
that merges modalities based on their reliabilities. We propose an application
to the construction of more reliable rs-fMRI parcellations through the introduc-
tion of multi-modal information from structural connectivity and myelin maps.
Our experiments show that GraMPa’s parcellations are more robust and more
representative of the underlying structure. One of the main advantages of the
proposed framework is its flexibility. It can be tailored for a specific set of modal-
ities and issues associated with a particular acquisition process. It is also easy
to integrate prior knowledge both in designing the modalities’ reliability maps
and through the introduction of known reliable boundaries defined as a new
locally reliable modality. Another possibility is to design a fully data-driven fu-
sion move step. Local segmentation uncertainties could be estimated for each
modality after each MRF optimisation using min-marginal energies [7].

Furthermore, our model alleviates the need to match the different modalities’
unary costs and does not limit the number of modalities considered. The method
could be extended to other multi-modal segmentation tasks. It could prove par-
ticularly well-suited to group-wise parcellation, where each subject would be
assimilated to a modality and the fusion would be driven by group consistency
measures. It would have the potential of handling very large groups, as subjects
don’t have to be considered simultaneously. The method could similarly be used
to merge MRF parcellations obtained from a large set of initialisations. Many
challenges remain associated with the multi-modal parcellation task. fMRI and
dMRI are currently the best way of measuring in vivo connectivity, but remain
very indirect measurements and can be unreliable. In addition, multi-modal anal-
yses would benefit from a stronger knowledge of the modalities interactions and
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similarities. Finally, using our parcellations in a clinical context requires the de-
velopment of robust methods for analysing the obtained connectivity networks,
while parcellation of diseased subjects may be associated with new challenges.

References

1. Behrens, T., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic
diffusion tractography with multiple fibre orientations: What can we gain? Neu-
roImage 34(1), 144–155 (2007)

2. Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens,
T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with
resting-state fMRI. NeuroImage 76, 313–324 (2013)

3. Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole
brain fMRI atlas generated via spatially constrained spectral clustering. Hum brain
Mapp 33, 1914–1928 (2012)

4. Eickhoff, S.B., Thirion, B., Varoquaux, G., Bzdok, D.: Connectivity-based parcel-
lation: Critique and implications. Hum brain Mapp 36(12), 4771–4792 (2015)

5. Glasser, M.F., Van Essen, D.C.: Mapping human cortical areas in vivo based on
myelin content as revealed by T1-and T2-weighted MRI. J Neurosci 31(32), 11597–
11616 (2011)

6. Honnorat, N., Eavani, H., Satterthwaite, T., Gur, R., Gur, R., Davatzikos, C.:
GraSP: Geodesic Graph-based Segmentation with Shape Priors for the functional
parcellation of the cortex. NeuroImage 106, 207–221 (2015)

7. Kohli, P., Torr, P.H.: Measuring uncertainty in graph cut solutions. Computer
Vision and Image Understanding 112(1), 30–38 (2008)

8. Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts based on linear
programming. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1436–1453 (2007)

9. Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for markov random
field optimization. IEEE Trans. PAMI 32(8), 1392–1405 (2010)

10. Moreno-Dominguez, D., Anwander, A., Knösche, T.R.: A hierarchical method
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